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Commercial finite element systems generally offer a range of beam finite elements for the engineer to model his/her
beam type structure.  Different finite element formulations are often provided to cope with the standard Euler-Bernoulli
beam, which does not include the influence of shear deformation, and with Mindlin and/or Hybrid formulations, which

do account for shear deformation as in Timoshenko’s theory.  The Mindlin type element, which uses the same shape
functions to approximate all displacements (translations and rotations) is often offered as a variable degree element, e.g.,
two-noded linear shape functions or three-noded quadratic shape functions, providing the engineer with the opportunity to
adopt a p-type mesh refinement strategy in addition to the usual h-type approach.  The Mindlin element with both linear and
quadratic shape functions was used to model the problem shown in figure 1(a) where the beam is fixed at both ends with a
concentrated load at the centre of the span.  A two-element mesh was used with a node at the centre of the beam where
the load is applied.  

The finite element reactions agree for both degrees of shape function (p=1 and p=2), and with the verification
documentation supplied by the software vendor.       

The Challenge
The reader is asked to investigate the two beam problems presented in figure 1 using the various beam elements
offered in their finite element system (including and excluding shear deformation) with the aim of providing
accurate results for the moment reactions, the maximum displacement and the maximum bending moment.
Evidence of solution verification should be provided in terms of the convergence of the quantities of interest with
mesh refinement and a prediction of the minimum number of elements required to obtain a accuracy of 1% in all
quantities should be provided.

Figure 1:  Beam problems and finite element reactions 

On the basis of the quality of the results for the problem of figure 1(a) achieved with a minimal two‐element mesh, the
engineer might be led into thinking that the same quality would be achieved if the concentrated load were moved to three
quarter’s span as shown in figure 1(b). The finite element reactions certainly satisfy vertical and rotational equilibrium in
the global sense. However, since moment equilibrium involves an unknown statically indeterminate constant moment one
cannot be sure that the moment reactions are the correct values. Evidence that they might be incorrect is provided by the
so‐ called element table results provided by the software used to produce these results, which shows moments at the
supports that have been extrapolated from the integration points.



Raison d’être for the Challenge
In structural engineering the beam is a very widely used
structural member.  Simple beam members may be
analysed by hand using strength of material solutions.
However, they usually form part of a larger structure and
the way in which the loads flow around the structure, as
shear forces and bending moments, depends on the
relative stiffness of adjacent members.  Such
complicated statically indeterminate structures are not
generally tractable by hand methods.  In such cases the
finite element (FE) method is often adopted.  

Often, when faced with a commercial FE system, the
engineer will find that it contains a veritable plethora of
beam elements each purporting to be suitable for
different type of beam.  Different beams will typically be
based on different beam theories and different FE
formulations of the particular theory.  For a given beam
problem, the different elements will often produce quite
different results and often mesh refinement is required in
order to home in on the theoretical solution.  

This challenge presented two problems, the first of which
was used as a software verification problem.  Based on
the mesh independence of the p-type refinement study
conducted on the first problem, the same mesh was used
for a design problem in which the load was moved from
the centre to the three-quarter point.  However, the
results for the design problem created using the software
function for tabulating element data showed moments
different to those reported at the nodes.  The difference
observed in the results led to the challenge of
determining the quantities of engineering interest,
maximum deflection and moment, for the design
problem.

Two Beam Theories
The primary actions seen in beams are shear and
bending.  For ‘thin’ beams, where the span to thickness
ratio is large, the deformations are predominantly due to
bending.  However, as the span to thickness ratio
decreases then deformations due to shear become
significant and need to be accounted for both in terms of

deflections.  The Euler-Bernoulli (EB) theory ignores
shear deformation and is thus appropriate to ‘thin’
beams whereas the Timoshenko theory includes a
representation of shear deformation and is thus
appropriate for thicker beams.  

The kinematics of the two beam formulations differ.  Both
formulations assume that plane sections remain plane
but whereas the EB formulation assumes that sections
normal to the neutral axis in the undeformed state
remain so in the deformed state, this condition is relaxed
for the Timoshenko (T) formulation as illustrated in
Figure 2. 

Theoretical Solutions to the Design Problem
The EB solution for the design problem is available in
many structural engineering texts and is presented in
Figure 3.  

Timoshenko solutions are less well published but may be
found in such texts as Cook et al, Concepts &
Applications of Finite Element Analysis, 4th Edition,
Wiley, 2002. The theoretical solutions for the design
problem using the two beam theories are shown in Table
1.  In addition to the significant increase in the
displacement under the load with shear deformable
theory, the statics, in terms of the shear forces and
moments, also change.

The theoretical displaced shapes (exaggerated by scale)
for the two theories are shown in Figure 4.

Finite Element Solutions to the Design
Problem
Many finite elements have been formulated based on the
two beam theories already discussed.  Perhaps the most
common beam element based on the EB theory is the
two-noded, Hermitian element which interpolates
displacement as a cubic polynomial, i.e., it is capable of
modelling the linear bending moments of the design
problem exactly.  In terms of the T theory then there is
more variation in the formulation of available elements.

80 Figure 2: Euler-Bernoulli and Timoshenko kinematic assumptions - nafe.ms/2jwa57f
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The most widely available element is, perhaps, that
based on the Mindlin formulation.  This element is often
of variable degree and interpolates both the
displacement and rotations in the same manner, e.g. if
the element is a linear element (p=1) then both
displacements and rotations are interpolated linearly.
The FE code used to generate the results for this
response was of the Mindlin formulation with linear,
quadratic and cubic degrees.

It is worth noting that a finite element system should only
require a single beam element if the same element could
be used reliably for both ‘thick’ and ‘thin’ beams.  There
is, however, a numerical issue with conforming
(displacement) finite elements (CFE) formulated on T
theory when the beam becomes ‘thin’.  This issue is
known as shear-locking and it can pollute the results of

‘thin’ beams.  For this reason many FE systems offer
elements based on both beam theories and this at least
allows the engineer to compare the results produced for
both theories and confirm whether or not shear-locking
is influencing the results.

FE results, using a two element mesh of variable degree
Mindlin elements, for both the problems considered in
the challenge are presented in Tables 1 and 2.

It is seen in Table 2 that whilst the shear forces and
moments do not change with p-type refinement, the
displacements under the load do.  There is a significant
change between p=1 and p=2 and only a small change, in
the fifth significant digit, for p=3.  The assumption, made
in the challenge, that mesh independence was obtained
for p=1, is clearly erroneous.  

Figure 3:  Euler-Bernoulli solution to the Design Problem - nafe.ms/2jw1Vvu

Table 1:  Theoretical solutions for the Design Problem

Table 2:  Convergence of quantities for the Software Verification Problem with two elements

Table 3: Convergence of quantities for the Design Problem with two elements



For the design problem, with the load at the three-
quarter position, both shear forces, moments and
displacements change as the element degree is
increased between linear and quadratic.  However, mesh
independence does appear to be observed as the results
for the cubic element are identical to those for the
quadratic element.   

Discussion
In the design problem the beam is moderately thick with
a span to thickness ratio of 10 and the maximum
deflections are 0.32 and 0.47mm respectively for the EB
and T theories.  Thus, if the EB displacement had been
taken, the maximum deflection would have been
underestimated by some 30% and this could make the
difference between the beam passing and failing an SLS
check on maximum deflection.

Theoretical solutions for the design problem were
obtained using both beam theories.  For both theories the
maximum deflection was seen to occur away from the
point load, at 0.60m and 0.65m respectively for the EB
and T theories.  Many commercial FE systems only report
displacements at nodes and unless the maximum

displacement occurs at the node then it will not be
available to the engineer.  The theoretical EB solution for
the design problem can, as already noted, be recovered
exactly using two cubic Hermitian beam elements.
However, in order to recover the maximum displacement
the engineer would have had to perform mesh
refinement to ‘home in’ on the maximum displacement.
This is an example of how poorly implemented post-
processing in commercial software can frustrate the
engineer’s task.  Had the engineer (erroneously) used an
element based on EB theory and taken the maximum
displacement from a two element model then he would
have obtained 0.25mm which is almost 50% below the
correct value!  Of course, if one is adopting an
inappropriate mathematical model in addition to not
picking up the maximum displacement then simulation
governance, the matching of numerical simulation with
measured results, will be impossible.

The design problem is hyperstatic (statically
indeterminate) thus the different kinematic assumptions
of the two beam theories, which result in different beam
stiffnesses, also, in addition to the displacements, lead to
the different forces and moments.  Both sets are,
however, in equilibrium with the applied load.  The

The exact Timoshenko displacement is shown for the design problem together with the result for the single p=2 Mindlin element.  The FE displacements
are, by definition, quadratic and cannot fit the exact cubic shape.  The quadratic result does however appear to fit exactly at the nodes. 

Figure 5:  Comparison of theoretical displacements with quadratic Mindlin element

The difference in the displacement between the T and EB theories is shown to illustrate the nature of the deflection due to shear deformation.  It is,
approximately, piecewise linear and so one might reasonably conclude that, like the EB theoretical solution, the T theory solution is also cubic in form.

Figure 4: Theoretical Displaced shapes for the Design Problem 
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Figure 6:  Comparison of nodal moments and those extrapolated from integration points

(a) Linear (p=1)                                                  (b) Quadratic (p=2)

maximum moment for both theories is at the right
hand support and it is seen that the EB theory
predicts a moment of 14.06kNm whereas the T theory
is about 3% less at 13.64kNm.  In an Allowable Stress
Design approach, this difference would lead to
different factors of safety but in a ULS calculation of
the plastic limit load, the collapse load would be
unchanged. 

For this response, a variable degree Mindlin element
was used to model the Timoshenko beam theory.  The
advice offered by the vendor for this element is that
the quadratic (p=2) element is capable of representing
linearly varying bending moments exactly.  The results
almost bear this out except that there is a small
difference in the displacement under the load for the
Software Verification Problem – see Table 2 – as the
degree is increased from quadratic to cubic.  The
quality of the result for the p=2 Mindlin element is
though somewhat surprising since we know, from the
theoretical solution shown in Figure 4, that the
displacement field is more or less cubic.  In
investigating this apparent anomaly further, the
displacement for a three-noded, quadratic Mindlin
element was compared with the exact Timoshenko
solution – see Figure 5.  

The nodal displacements are, more or less, exact but
clearly since they are quadratic then between nodes
there is significant discrepancy.  The moments inside
the element are examined to see whether or not they
agree with those reported at the nodes - Figure 6.
In the case of the linear Mindlin element, a single
integration point is used and so the variation of the
internal moment field is assumed to be constant.
This leads to significant differences between the
internally generated moments and the nodal
moments.  Whilst the nodal moments are in
equilibrium with the applied load, the internal
moments, extrapolated from integration points, are
clearly not.  For the quadratic element two integration
points are used and it is seen that these appear to be
exact as a linear extrapolation to the nodes leads to
the same values as the nodal moments.

The NAFEMS benchmark challenge is created and discussed by Angus Ramsay. 
If you would like to discuss any of the challenge please contact challenge@nafems.org

Thus, in responding to the challenge, it might be noted
that with a two-element mesh of quadratic Mindlin
elements, a very close approximation to the theoretically
exact solution is obtained.  It is noted, however, that the
maximum displacement is not available from this mesh
and it has already been noted how this inadequacy might
stymy the engineer’s task.  The same is, of course, true
for moments.  It is rather easy to construct a problem
where the maximum moment occurs somewhere between
nodes.  Thus both serviceability and ‘strength’
calculations, based on maximum moment, might be
compromised for the engineer by the inadequacies of
commercial software.

In closing this response, it is important to recognise a
potential cause of finite element malpractice when using
Mindlin type elements.  When using a linear element the
internal moments (extrapolated from integration points)
would not have been the same as the nodal values.  In
fact, in this example, they would have been significantly
less than the true values - see Figure 6(a).  The
erroneously underestimated moments would lead, in an
Allowable Stress Design, to an overestimation of the factor
of safety and this is clearly of concern to the engineer.

The reason that this point is mentioned is that in some
industries the standard technique for assessing structural
members is based on internal stress resultants
extrapolated from integration points.  As demonstrated in
this response, if the degree of the element is not
appropriate for the loading seen by the beam then this
approach can lead to significantly erroneous stress
resultants that would, under code assessment, give an
erroneous view of the safety of the structure.  

The solution to this potentially significant issue, is to
always use stress resultants calculated directly at the
nodes from the basic equilibrium equations.  These are
guaranteed to be in equilibrium with the applied loads
even if the degree of the element is inappropriate to the
applied loading, and provided sufficient mesh refinement
(either/both p-type and h-type) has been undertaken then
these resultants will form an appropriate set on which the
structure can safely be assessed. �




